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ABSTRACT This report details FY85 wind tunnel tests on basic ten-
sioned-membrane structure forms, data reduction and analysis, and
results. Models of parallel and diagonally-arched structures were
tested. Testing was performed at the James Forestal Laboratory wind
tunnel, Princeton University, and the environment wind tunnel located
at the Naval Civil Engineering Laboratory (NCEL). All data and results
have been converted to pressure coefficient form to facilitate their use
in wind load calculations. Results are presented in Appendixes A, B,
and C. Appendixes A and B give average and peak section pressure
coefficients arranged by model for different wind incident angles, res-
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ed by model for different wind incident angles. The effects of varying
length, height, wind incident angle, and cross section on parallel-
arched structures were measured. Finally, an example wind load calcu-
lation using the results is contained in Appendix D.
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INTRODUCTION

The Naval Civil Engineering Laboratory (NCEL) has been tasked by
the Marine Corps to develop an expeditionary shelter system. This system
will provide environmental protection for command and control, equipment
maintenance and storage, and other combat support functions. The system
being developed utilizes tensioned-membrane technology. Examples of
tensioned-membrane structures are shown in Figures I and 2. This shelter
system must withstand wind gusts up to 120 mph. For conventional build-
ings, standard guidelines such as NAVFAC DM-2.2 or ANSI A58.1-1982 (Ref 1
and 2) can be used to estimate wind loads. However, these guidelines
cannot be used on tensioned-membrane structures due to their unusual
construction. Section 6.4.3 of Reference 2 states that wind tunnel test-
ing is "recommended for those buildings or structures having unusual
geometric shapes, response characteristics, or site locations for which
channeling effects or buffeting in the wake of upwind obstructions
warrant special consideration, and for which no reliable documentation
pertaining to wind effects is available in the literature."

FY84 development efforts included wind tunnel testing and compila-
tion of data for various geometries and sizes of basic tensioned-
membrane structure forms under consideration. The wind tunnel tests
were performed by Ocean StrucL. es, Inc., under contract to NCEL.
Unreduced data from these tests were turned over to NCEL for reduction
and analysis. This report documents these tests, FY85 verification wind
tunnel testing performed by NCEL, analysis results, and conclusions.

BACKGROUND THEORY

'This section details the basic equations and principles used for
building aerodynamics and wind tunnel testing.

The pressure distribution around a body immersed in a moving fluid
is primarily function of the local variation in fluid velocity produced
by the body.---From Prnoulli's equation, with the subscript o referring
to freestream conditions, .

PO 1 2 p 1 (- + g z + -- v -+ g z + Iv 2
Po 0 2o p 2

. . . . • . . i I l i l l I I I



where p = static fluid pressure
p = fluid mass density
g = acceleration of gravity

z = elevation

v = fluid velocity

For the low velocities encountered in building aerodynamics,
compressibility effects are neglible. Assuming constant elevation,

Equation 1 reduces to,

p - p I V 2  (2)
o 2 0 (2

Lhe maximum pressure difference from this equation is,

( ) 1 2
o max 2 "o V

at the stagnation point where the flow velocity2 is z(to. Dividing
Equation 2 by this reference value, (1/2) p v , yields the following

dimensionless form of Equation 2,

0 = (v) 2
1 2 1 -
2 o Vo

where Cp is defined as the pressure coefficient. All data and results
detailed here are in this form.

For wind tunnel testing of models, dynamic similitude conditions
must be met. Dynamic similitude requires the Reynold's number for both
the model and full size structure be the same, i.e.,

Remodel = Reprototype (5)

Strict adherence to Equation 5 is difficult when testing small-scale
models. Generally, building forms are so angular that viscous effects
are secondary. Reference 3 suggests that for wind tunnel testing of

building forms, dynamic similitude will be met for model Reynold's
numbers in excess of 11,000. As discussed later in this report, all

model Reynold's numbers in this effort were between 170,000 and 950,000.

Finally, consideration must be given to accurately simulate
full-scale boundary layer conditions. The distribution of mean
windspeed with height is described by the power law relation,

2



where Vz = wind speed at height z

= free stream wind speed
z = height
6 = boundary layer thickness
a = exponent, dependent on boundary layer type

Table 1 lists I different boundary layers and exponents.

Table 1. Boundary Layer Profiles and Power
Law Exponents (Ref 4)

Boundary Layer Type Power Law Exponent

City 0.34

Urban 0.18

Open terrain 0.17

Figure 3 shows these boundary layer profiles referenced to the NCEL

wind tunnel. These boundary layers can be simulated In the wind
tunnel by proper placement of flow impediments or screens upwind of
the wind tunnel test section.

TEST DESCRIPTIONS

Two separate series of wind tunnel tests are described in this
section. The first series was performed by Ocean Structures, Inc.,
under contract to NCEL. After receipt of this data, and compilation of
data on similar structures from other sources, verification testing was
performed at NCEL.

Wind tunnel testing performed under contract to NCEL was performed
at the low turbulence wind tunnel located at the James Forestal
Laboratory, Princeton University. Table 2 lists the wind tunnel
characteristics.

Table 2. Princeton Wind Tunnel
Characteristics

Characteristic Specification

Working cross section 3 ft by 5 ft

Maximum speed 120 mph

Maximum blockage 5%

Blockage refers to the ratio of maximum cross-sectional area to test
section cross-sectional area. Pressure measurements were made with
pressure taps connected to a 90-tube manometer board using dyed alcohol
with a specific gravity of 0.793. All pressure measurements were

3



referenced to test section static pressure. Velocity measurements were

made with a pitot-static tube connected to the manometer board.
Figure 4 shows tube assignments.

Worst case environmental wind conditions are flow across open, flat
terrain with few obstructions. Consequently, models were mounted away

from test section walls to minimize boundary layer effects. Model mount-
ing details are shown in Figure 5. The Reynold's number for all models

varied between 570,000 and 950,000. Pressure taps wero placed over
roughly half of each model's surface. Each model was tested over wind
incident angles from 0 to 180 degrees in 30-degree increments. Data
were recorded by photographing the manometer board after the reading
stabilized. Figure 6 shows a sample data photograph.

Dimensions of models tested at Princeton are .hown in Figure 7.
Alodels of both parallel- and diagonally-arched tensioned-memhrane
structures were tested. Model groups A, B, and C represent parallel-

arched Clamshell Buildings, Inc., series 50 structures. Models in group
A are of constant cross section and varying length. Models in groups B
and C have constant lengths, but different cross sections (Figure 8).

The diagonally-arched model tested was a 1/100-scale model of the
Spandome, Inc., structure. All models were made of wood.

Another parallel-arched tensioned-membrane structure under

consideration by NCEL was the Sprung Instant Structure, manufactured by
Sprung Instant Structures, Inc. This structure is geometrically similar
to the Clamshell structures mentioned above. Wind tunnel data on the
Sprung was provided to NCEL by the manufacturer in FY84 (Ref 5). Prelimi-
nary analysis of wind tunnel data on both parallel-arched structures was
conducted. Results showed much smaller negative pressures, or suctions,
over the Sprung structure. Due to similarities between both parallel-
arched structures, verification testing was performed at NCEL to rectify
the differences. Characteristics of the NCEL wind tunnel are detailed

in Table 3.

Table 3. NET, Wind Tunnel
Characteristics

Characteristic Specification

Working cross section 3 ft by 5 ft.

Maximum speed 45 mph

Maximum blockage 5 to 10%

Velocity measurements were made with a Kurtz hot-wire anemometer.
Pressure measurements were made with pressure taps connected to a 47
channel Scanivalve Corp. valve tree and a Serta Systems 0 to n.1 psid

strain-gauge-type differential pressure transducer. All pressure measure
ments were referenced to tunnel test section static pressure, measured

at the model roof height. All instrumentation was controlled by a Macsym
2 microcomputer. Real-time conversion of pressure measurements to
pressure coefficient form was also performed with this system.
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Figure 9 shows dimensions of two of the three models tested. The
parallel-arched models are 1/60 scale. The Sprung Instant Structures

model shown in Figure 9 will hereafter be referred to as model D. The
diagonally-arched 1/100-scale Spandome model used earlier at Princeton

was also tested (Figure 7).
The atmospheric boundary layer for open, flat terrain with scattered

windbreaks was simulated. Figure 3 shows the actual boundary layer pro-
file during testing. Flow velocities during testing were approximately
8.2 meters per second, resulting in test Reynold's numbers of 170,000.
For the parallel-arched models, one quarter section was tapped. Measure-

ments were taken for azimuth angles varying over 180 degrees, in 30-degree

increments. During each test run, corresponding to each azimuth angle,
every tap was sampled 6,000 times. Data output consisted of average,

maximum, and minimum pressure coefficients for each tap.

ANALYS IS

Comparisons of Princeton and NCEL wind tunnel data on the

1/100-scale diagonally-arched model were made. Results showed good
correlation, with an average 3.7 percent difference between tap readings
and a 26 percent standard deviation. Princeton test data were used for
subsequent data analysis and reduction. Figure 10 shows comparisons of
results on model D for NCEL, Reference 5 tests, and potential flow
predictions. From the graphs, Reference 5 test data underestimated
negative pressures, or suctions. As a result, NCEL data on the Sprung
Instant Structure model were used for analysis and reduction.

Figure 11 shows the analysis and reduction flowchart. Each major
step is discussed below. The first step in the data reduction process

consisted of conversion of Princeton data to pressure coefficient form.
Data from the Princeton tests were recorded by photographing the mano-
meter board after the readings had stabilized (see Figure 6 for example).

Columns 9 and 10 as identified in Figure 4, recorded the total tunnel
and test section static pressures referenced to atmospheric, respec-

tively. The total tunnel pressure is the sum of the dynimic pressure,
and the static pressure,

1 2
H S + 2 p v (7)

where pH= total tunnel pressure

PS = static pressure

The dynamic pressure is determined by subtracting the test section
static pressure from the total tunnel pcessure:

1 2 (8)
pv PH - PS
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This pressure difference can be calculated for the manometer board
us ing,

PH Ps = S.G. PH20 (h9 - h1 0) (9)

where S.G. = specific gravity of manometer fluid (0.793)

PH20 density of water

h9  = manometer fluid height in column 9

hlo = manometer fluid height in column 90

The pressure difference between the static pressure at tap x and test
section static pressure is,

Px Ps = S.G. PH20 (h - h1 0) (10)

where h = manometer fluid height in column x.x

At tap x, the pressure coefficient is calculated from,

hx - h0
hx h10

Cp h -h (11)
h9 h10

Using Equation 11, the pressure coefficients were calculated from the
data photographs.

After data conversion to pressure coefficient form, pressure co-
efficient contour plots were generated. This was accomplished with the

DISSPI,A graphics software package from Issco, Inc., on the PRIME 750
minicomputer at NCEL. A geometric simulation of the wind tunnel models

was constructed. Inputs were pressure tap coordinates and the corres-

pondence pressure coefficients. Using a least squares weighting tech-
nique, contour plots were calculated in user defined intervals and super-

imposed on the model's surface. Appendix A contains top views of the
computed contours, arranged by model and azimuth angle. These contours
are approximations by nature of the weighting technique. An accuracy
check revealed that the algorithm worked well in the interior of a sur-
face, but had trouble accurately resolving contours along boundaries.

This effect was compensated for by mnnually estimating pressure co-

efficient contours along model boundaries.

After contour plot generation, each model was sectioned, as shown
in Figure 12. The parallel-arched models were divided up into 12 sec-
tions, symmetric ahout the model centerlines. The diagonally-arched
model was divided into 16 sections. Section avprage pressure co-
efficients were calculated using,

Z Cp. AI
P . . - (12)

1 1
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where Cp = section average pressure coefficient

A. = ith area between contours
1

th
Cpi = i pressure coefficient, equal to the average to the

coefficients defining A i

Areas were measured using a Salmoiraghi optical planimeter. Average

section pressure c efficient results are found in Appendix B. Appendix
C gives the largest negative or positive pressure coefficients for each
section, arranged by model.

CONCLUSION

Results detailed in this report are based on rigid models. With
tensioned-membrane structures, structural shape is fabric dependent.
The dynamic behavior and total deformation of these structures in heavy
winds is unknown. Should these deformations be excessive, the resultant
flow about the structures will be altered, and the results presented may
not be accurate. For diagonally-arched structures, fabric flutter may
be a problem due to large expanses of unconstrained fabric. This

represents another dynamic phenomenon not accounted for in the present
work. Finally, application of results presented in this report is
demonstrated in Appendix D.
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Details of Princeton 31/2' x 5' wind tunnel test section.

X

1 x 36 dia. 30
100 tube manifold

60

20

I 42

Figure 5. Princeton wind tunrip 1 test section.
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Model L* D* H*
H

__Al 24.0 7.98 3.07
_ A3 18.0 7.98 3.07

A5 12.0 7.98 3.07
A6 9.0 7.98 3.07

B6 11.72 8.53 4.36
C6 14.30 9.08 5.65V All dimensions in inches

L

5.40--i

jDoor line-__
, '14.4

16.8

Beam shape Fabric sag line

at center

5.40

2.16

Figure 7. Dimensions of models tested at Princeton.
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Dimensions of wind tunnel models tested at NOEL.

Configuration "D"
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Figure 9. Models tested at NCEL.
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Section definition and wind orientation.

Parallel-arched structures
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Figure 12. Structure section definitions.
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Appendix A

PRESSURK CONTOUR PLOTS
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Appendix B

SECTION AVERAGE PRESSURE. COMMI TENTS

Bl-1



Recommended Section Pressure Coefficients, Model Al

Azimuth Angle
Section

0 30 60 90

1 -0.40 -0.70 -1.30 -1.00

2 -0.40 -0.45 -0.65 -0.40

3 -0.35 -0.45 -0.45 -0.40

4 -0.35 -0.60 -0.85 -1.00

5 -0.40 -0.50 -0.80 -1.00

6 -0.40 -0.05 0.40 0.50

7 -0.35 -0.25 0.25 0.50

8 -0.35 -0.40 -0.80 -1.00

9 -0.35 -0.85 -1.30 -1.25

10 -0.35 -0.10 -0.30 -0.65

11 -0.45 -0.65 -0.60 -0.65

12 -0.45 -0.50 -0.55 -1.25
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Recommended Section Pressure Coefficients, Model A3

Azimuth Angle
Section

0 30 60 90

1 -0.45 -0.80 -1.20 -1.00

2 -0.45 -0.50 -0.50 -0.40

3 -0.35 -0.50 -0.40 -0.40

4 -0.35 -0.65 -0.85 -1.00

5 -0.45 -0.60 -1.05 -0.95

6 -0.45 -0.10 0.50 0.55

7 -0.35 -0.30 0.25 0.55

8 -0.35 -0.45 -0.85 -0.95

9 -0.35 -0.95 -1.25 -1.15

10 -0.35 -0.10 -0.25 -0.60

11 -0.40 -0.60 -0.65 -0.60

12 -0.40 -0.60 -0.65 -1.15
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Recommended Section Pressure Coefficients, Model A5

Azimuth Angle

Section
0 30 60 90

1 -0.60 -0.90 -1.05 -0.85

2 -0.60 -0.55 -0.40 -0.30

3 -0.50 -0.60 -0.45 -0.30

4 -0.50 -0.60 -0.80 -0.85

5 -0.55 -0.80 -0.95 -0.85

6 -0.55 -0.10 0.50 0.60

7 -0.50 -0.40 0.25 0.60

8 -0.50 -0.55 -0.75 -0.85

9 -0.35 -0.90 -1.20 -1.05

10 -0.35 -0.05 -0.20 -0.45

11 -0.50 -0.75 -0.65 -0.45

12 -0.50 -0.55 -0.75 -1.05
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Recommended Section Pressure Coefficients, Model A6

Azimuth Angle
Section

0 30 60 90

1 -0.70 -0.90 -0.80 -0.80

2 -0.70 -0.55 -0.30 -0.25

3 -0.65 -0.75 -0.40 -0.25

4 -0.65 -0.80 -0.80 -0.80

5 -0.60 -0.90 -0.80 -0.80

6 -0.60 -0.15 0.50 0.65

7 -0.60 -0.45 9.35 0.65

8 -0.60 -0.75 -0.80 -0.80

9 -0.35 -0.85 -0.90 -1.00

10 -0.35 -0.05 -0.15 -0.45

11 -0.55 -1.00 -0.65 -0.45

12 -0.55 -0.70 -0.70 -1.00
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Recommended Section Pressure Coefficients, Model B6

Azimuth Angle

Section
0 30 60 90

1 -0.80 -1.00 -0.75 -0.85

2 -0.80 -0.75 -0.55 -0.45

3 -0.70 -0.85 -0.60 -0.45

4 -0.70 -0.90 -0.80 -0.85

5 -0.75 -0.90 -0.80 -0.80

6 -0.75 -0.10 0.50 0.75

7 -0.65 -0.10 0.40 0.75

8 -0.70 -0.70 -0.80 -0.80

9 -0.30 -1.00 -1.00 -0.80

10 -0.30 -0.10 -0.25 -0.45

11 -0.60 -0.80 -0.80 -0.45

12 -0.60 -0.75 -0.80 -0.80
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Recommended Section Pressure Coefficients, Model C6

Azimuth Angle

Section
0 30 60 90

1 -0.75 -1.10 -0.85 -1.10

2 -0.75 -0.90 -0.65 -0.85

3 -0.70 -0.90 -0.80 -0.85

4 -0.70 -1.05 -0.90 -1.10

5 -0.70 -1.00 -0.80 -1.00

6 -0.70 -0.10 0.50 0.85

7 -0.70 -0.10 0.50 0.85

8 -0.70 -0.85 -0.85 -1.00

9 -0.25 -1.05 -1.10 -1.15

10 -0.25 -0.10 -0.30 -0.65

11 -0.55 -0.85 -1.00 -0.65

12 -0.55 -0.85 -0.85 -1.15
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Recommended Section Pressure Coefficients, Model D

Azimuth Angle
Section

0 30 60 90

1 -0.65 -1.05 -1.10 -0.75

2 -0.65 -0.75 -0.55 -0.10

3 -0.55 -0.70 -0.50 -0.10

4 -0.55 -0.75 -1.00 -0.75

5 -0.60 -0.65 -0.70 -0.80

6 -0.60 -0.35 0.15 0.50

7 -0.55 -0.40 0.05 0.50

8 -0.55 -0.50 -0.75 -0.80

9 -0.70 -1.35 -1.35 -0.90

10 -0.70 -0.55 -0.75 -0.60

11 -0.55 -0.70 -0.70 -0.60

12 -0.55 -0.60 -0.70 -0.90
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Recommended Section Pressure Coefficients, Model F

Azimuth Angle
Sect ion

0 30 60 90

1 -0.50 -0.60 -0.50 -0.65

2 -0.50 -0.35 -0.35 -0.95

3 -0.75 -0.30 -0.25 -0.55

4 -0.55 -0.50 -0.50 -0.55

5 -0.65 -0.70 -1.00 -0.95

6 -0.65 -0.75 1.05 0.65

7 -0.55 -0.90 0.85 0.70

8 -0.75 -1.00 -0.70 -0.70

9 -0.65 -0.35 -0.40 -0.50

10 -0.65 -0.05 -0.10 -0.80

11 -0.80 -0.10 -0.40 -0.65

12 -0.40 -0.25 -0.10 -0.65

13 -0.60 -0.60 -0.90 -0.80

14 -0.60 -0.75 -1.05 -0.50

15 -0.40 -0.85 -0.80 -0.60

16 -0.80 -1.05 -0.65 -0.60
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Appendix C

SECTION PEAK PRESSURE COEFFICIENTS
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PEAK PRESSURE COEFFICIENTS IN EACH SECTION, MODEL Al

Azimuth Angle

Section
0 30 60 90

1 -0.80 -1.26 -3.06 -1.21

2 -0.80 -1.20 -2.13 -1.17

3 -0.50 -0.83 -1.08 -1.17

4 -0.50 -0.85 -1.11 -1.21

5 -0.56 -0.89 -0.91 -1.00

6 -0.56 -0.07 (0.18) 0.69 0.56

7 -0.41 -0.32 (0.02) 0.38 0.56

8 -0.41 -0.46 -0.98 -1.00

9 -0.98 (0.78) -1.62 -2.33 -1.77

10 -0.98 (0.78) -0.93 (0.78) -1.76 (0.83) -1.49 (0.45)

11 -0.59 -1.07 -1.36 -1.49 (0.45)

12 -0.59 -0.65 -0.60 -1.77

C-2



PEAK PRESSURE COEFFICIENTS IN EACH SECTION, MODEL A3

Azimuth Angle

Section•
0 30 60 90

1 -0.80 -1.45 -2.44 -1.17

2 -0.80 -1.30 -1.79 -1.1i

3 -0.54 -0.91 -1.06 -1.11

4 -0.54 -0.91 -1.15 -1.17

5 -0.60 -0.93 -1.09 -1.00

6 -0.60 -0.09 (0.11) 0.69 0.57

7 -0.44 -0.32 (0.09) 0.34 0.57

8 -0.44 -0.41 -0.89 -1.00

9 -0.96 (0.78) -2.04 -2.20 -1.87

10 -0.96 (0.78) -1.04 (0.68) -1.65 (0.83) -1.43 (0.45)

11 -0.61 -0.96 -1.36 -1.43 (0.45)

12 -0.61 -0.85 -0.76 -1.87
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PEAK PRESSURE COEFFICIENTS IN EACH SECTION, MODEL A6

Azimuth Angle
Section

0 30 60 90

1 -0.93 -1.48 -0.94 -0.82

2 -0.93 -1.20 -0.81 -0.83

3 -0.70 -1.16 -0.78 -0.83

4 -0.70 -1.12 -0.82 -0.82

5 -0.64 -0.87 -0.77 -0.82

6 -0.64 -0.17 (0.06) 0.56 0.67

7 -0.57 -0.43 0.46 0.67

8 -0.57 -0.75 -0.76 -0.82

9 -1.07 (0.76) -1.69 -2.06 -1.57

10 -1.07 (0.76) -0.93 (0.82) -1.06 (0.89) -1.17 (0.59)

11 -0.78 -1.88 -1.33 (0.04) -1.17 (0.59)

12 -0.78 -0.80 -0.80 -1.57
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PEAK PRESSURE COEFFICIENTS IN EACH SECTION, MODEL B6

Azimuth Angle

Section

0 30 60 90

1 -1.11 -1.55 -0.83 -0.94

-1.11 -1.32 -0.83 -0.98

3 -0.76 -1.28 -0.96 -0.98

4 -0.76 -1.30 -0.94 -0.94

5 -0.79 -0.91 -0.81 -0.82

6 -0.79 -0.11 0.64 0.76

7 -0.57 -0.13 (0.04) 0.48 0.76

8 -0.57 -0.71 -0.79 -0.82

9 -1.17 (0.76) -2.85 -1.66 -0.91

10 -1.07 (0.76) -0.93 (0.82) -1.06 (0.89) -1.17 (0.61)

11 -0.78 -1.23 -0.83 -1.15 (0.61)

12 -0.78 -1.17 -1.74 -0.91
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PEAK PRESSURE COEFFICIENTS IN EACH SECTION, MODEL C6

Azimuth Angle

Section
0 30 60 90

1 -0.96 -1.74 -0.91 -1.54

2 -0.96 -1.42 -1.26 -1.46

3 -0.72 -1.37 -1.12 -1.46

4 -0.72 -1.46 -1.14 -1.54

5 -0.69 -1.02 -0.83 -1.05

6 -0.69 -0.09 0.56 0.90

7 -0.71 -0.29 (0.10) 0.64 0.90

8 -0.71 -0.89 -0.90 -1.05

9 -1.32 (0.76) -2.56 -2.20 -1.85

10 -1.32 (0.76) -1.34 (0.94) -1.63 (0.96) -1.65 (0.46)

11 -0.74 -1.50 -2.85 -1.65 (0.46)

12 -0.74 -1.27 -0.90 -1.85
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PEAK PRESSURE COEFFICIENTS IN EACH SECTION, MODEL D

Azimuth Angle
Section

0 30 60 90

1 -1.36 -3.04 -1.23 -0.88

2 -1.36 -2.54 -1.63 (0.04) -0.60 (0.48)

3 -1.06 -1.32 -1.20 -0.60 (0.48)

4 -1.06 -1.41 -1.34 -0.88

5 -0.78 -0.74 -0.73 -0.78

6 -0.78 -0.39 0.22 0.60

7 -0.58 -0.67 -0.22 (0.28) 0.60

8 -0.58 -0.43 -0.72 -0.78

9 -1.36 (0.38) -3.04 -1.74 -1.71

10 -1.36 (0.38) -2.54 -2.11 (0.22) -1.76 (0.47

11 -1.06 -1.00 -1.08 -1.76 (0.47)

12 -1.06 -1.05 -0.93 -1.71
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Appendix D

EXAMPTYF WIND LOAD CALCUJATJ,)NS
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PROBLEM:

Find wind and anchor loads on the center section of a series 50
clamsmeter w/7 bays as a function of velocity. Assume 90-degree azimuth
angle.

SOLUTION:

From NAVFAC DM-2.2, wind loads on structures are calculated from,

2
q = 0.00256 Ch Cp v

where: q = load (in lb/ft )

Ch = height correction factor ( I for h <30 ft)

Cp = pressure coefficient

v = wind velocity (mph)

For the structure under study, the overall dimensions are,

h = 24 ft, peak; (10-ft eave)

d = 61 ft

1 = 140.5 ft (87.5-ft center section)

then,

l/d = 2.30, h/d = 0.39

from the models tested, model A3 was,

l/d = 2.26, h/h = 0.38

The appropriate section average and peak pressure coefficients are
found in Appendixes B and C. They are:

Section Cp Cp (max)

1. Windward side 0.55 0.57
2. Windward roof -0.40 -1.11
3. Leeward roof -1.00 -1.17
4. Leeward side -0.95 -1.00

Substitution into the wind load equation gives,

Section q q (max)

1 0.0014V 0.0015V 
2

2 -0.O010V -0.0028V
2

3 -0.0026V2 -0.0030V
2

4 -0.0026V
2  -0.0030V

2
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These are plotted in Figures D-1 and D-2.

The total section loads are found from,

fT = q A

where fT = total section load

A = section area

for this structure,

Section Area (ft ) Ft (ibs)

1 894.25 1.26V2

2 2794.75 -2. 86V 
2

3 2794.75 -7.15V2

4 894.25 -2.17V
2

These loads are plotted in Figure D-3.

To calculate anchor loads, the section loads per foot of length are
given above. These can be resolved to concentrated loads acting at the
midpoint of each section, or shown in Figure D-4 (assuming the frame is
pinned on the windward side and simply-supported on the leeward side.)

Ef = 0 =- h + 0.0142 - 0.0143v 2 + 0.0364v
2 + 0.0240v2

x1 _

h 2
h1 0.0601v

IF = 0 = - 0.003v2 + 0.0294v 2 + 0.0746v 2 + 0.0051v -

v 1 + v2 = 0.1061v
2

EM = 0 = (0.003)(1.06)v
2 + (0.014)(4.99)v

2 - (0.0143)(17)v
2

a

- (0.0294)(16.48)v 2  (0.0746)(44.52)v 2 + (0.0364)

(17)v 2  (0.0051)(5 .94)v 2  + (0.0240)(4.99)v 2  + 61v 2 ;

Fm 2 0.058lV]

from (2),

v1 = 0.0480v2
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On the windward side,

VT = [(0.0480v2)2 + (0.0601v2)2] 1/2 = 0.0769v 2

The total anchor loads are,

VT (windward) 6.7288v
2

VT (leeward) = 5.0838v
2

These are plotted in Figure D-5.

The total required anchor capacities are plotted in Figure D-6.
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GDM & ASSOC. INC Fairbanks. AK
INTL MARITIME. INC D Walsh. San PCdrt. ('A
IRE-IT'D Input Proc Dir (R. Danford). Eagan. MN
LAYTON & SELL. INC. P.S. Mfg Rsch Dcpt (EdlNard,). Marictta. (iA
LEO A DALY CO Honolulu. HI
LINDA HALL LIBRARY Doc Dept. Kansas City. M)
NATL ACADEMY OF ENGRG Alexandria; VA
TANDEMLOC. INC J DiMartino. Jr. Ronkonkoma. NY
WELLSPRING COMM H Zarecor. Marshall. VA
BULLOCK. TE La Canada. CA
PADILLA. LM Oxnard. CA
PETERSFN. (APT N.W. Plca,,anton. (A
QUIRK. J Panama Cit\. FL
SIEVENS. "W Long Beach. MS
UIASZEWSKI. CDR T.Jt Honolulu. III


